aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ch4/4-10_getline-calc.c276
1 files changed, 276 insertions, 0 deletions
diff --git a/ch4/4-10_getline-calc.c b/ch4/4-10_getline-calc.c
new file mode 100644
index 0000000..499e71a
--- /dev/null
+++ b/ch4/4-10_getline-calc.c
@@ -0,0 +1,276 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <math.h>
+#include <string.h>
+
+/* The C Programming Language: 2nd Edition
+ *
+ * Exercise 4-10: An alternate organization uses getline() to read an entire
+ * input line; this makes getch() and ungetch() unnecessary. Revise the
+ * calculator to use this approach.
+ *
+ * Answer: This is much trickier than it seems; it teaches you how to refactor
+ * a program. You won't be using the built-in getline() for this, but rather
+ * the function that we wrote back in Chapter 1.
+ *
+ * The majority of the trickiness lies in getop(). The idea is to store the
+ * entire line in a buffer that sits in an external variable. Then you pick and
+ * choose which chars to put into your target string, in much the same way we
+ * picked and chose which characters to getch() previously.
+ *
+ * The rest of the program works about the same, with only a few minor tweaks
+ * needed. The cool part is the whole thing didn't need to be rewritten; just
+ * the "plumbing" part, getop().
+ *
+ * In addition to refactoring, this entire project demonstrates the usefulness
+ * of modularizing your code into small, discrete functions.
+ */
+
+#define MAXOP 100
+#define NUMBER '0'
+#define MAXVAL 100
+#define BUFSIZE 100
+
+int getop(char []);
+void push(double);
+double pop(void);
+void stack_top(void);
+double dupe_top(void);
+void swap_top_two(void);
+void clear_stack(void);
+double fetch_var(char);
+void store_var(char, double);
+void store_last(double);
+double fetch_last(void);
+int mygetline(char [], int);
+
+int sp = 0; // Next free stack position
+double val[MAXVAL]; // Value stack
+char buf[BUFSIZE]; // buffer
+int bufp = 0; // next free position in buf
+double vars[27];
+
+/* Reverse Polish calculator:
+ *
+ * Binary operations (+-*\%)
+ * operand operand operator
+ *
+ * Example: 6 minus 2 in Reverse Polish Notation is "6 2 -"
+ */
+int main() {
+ int type;
+ double op2;
+ char s[MAXOP];
+ char ltr;
+
+ while (mygetline(buf, BUFSIZE) != 0) {
+ bufp = 0;
+ while ((type = getop(s)) != '\0') {
+ if (isalpha(type) && islower(type)) {
+ push(fetch_var(type));
+ continue;
+ }
+ switch (type) {
+ case NUMBER:
+ push(atof(s));
+ break;
+ case '+':
+ push(pop() + pop());
+ break;
+ case '*':
+ push(pop() * pop());
+ break;
+ case '-':
+ op2 = pop();
+ push(pop() - op2);
+ break;
+ case '/':
+ op2 = pop();
+ if (op2 != 0.0) {
+ push(pop() / op2);
+ } else {
+ printf("Error: Cannot divide by zero.\n");
+ }
+ break;
+ /* Yay for modulus! */
+ case '%':
+ op2 = pop();
+ if (op2 != 0.0) {
+ push((int)pop() % (int)op2);
+ } else {
+ printf("Error: Cannot modulo by zero.\n");
+ }
+ break;
+ /* Top of stack */
+ case '?':
+ stack_top();
+ break;
+ /* Dupe the top of the stack */
+ case '#':
+ dupe_top();
+ break;
+ /* Swap the top two */
+ case '~':
+ swap_top_two();
+ break;
+ /* Clear the stack */
+ case '!':
+ clear_stack();
+ break;
+ /* sin() support */
+ case '(':
+ op2 = sin(pop());
+ push(op2);
+ break;
+ /* exp() support */
+ case '{':
+ op2 = exp(pop());
+ push(op2);
+ break;
+ /* pow() support */
+ case '^':
+ op2 = pop();
+ push(pow(pop(), op2));
+ break;
+ /* 'lastprint' support */
+ case '@':
+ push(fetch_last());
+ break;
+ /* setting variables */
+ case '=':
+ ltr = buf[bufp];
+ if (isalpha(ltr) && islower(ltr)) {
+ op2 = pop();
+ store_var(ltr, op2);
+ push(op2);
+ } else {
+ push(0.0);
+ }
+ break;
+ /* Final output */
+ case '\n':
+ op2 = pop();
+ printf("\t%.8g\n", op2);
+ /* Extra Credit: Lets output every non-zero variable! */
+ for (ltr = 'a'; ltr <= 'z'; ltr++) {
+ if (fetch_var(ltr) != 0) {
+ printf("\t%c: %.8g\n", ltr, fetch_var(ltr));
+ }
+ }
+ store_last(op2);
+ break;
+ default:
+ printf("Error: Unknown command %s\n", s);
+ break;
+ }
+ }
+ }
+ return 0;
+}
+
+void push(double f) {
+ if (sp < MAXVAL) {
+ val[sp++] = f;
+ } else {
+ printf("Error: Stack full. Cannot push %g\n", f);
+ }
+}
+
+double pop(void) {
+ if (sp > 0) {
+ return val[--sp];
+ } else {
+ printf("Error: Stack empty.\n");
+ return 0.0;
+ }
+}
+
+int getop(char s[]) {
+ int i, c;
+
+ while ((s[0] = c = buf[bufp++]) == ' ' || c == '\t');
+ if (c >= 'a' && c <= 'z') {
+ return c;
+ }
+ s[1] = '\0';
+ /* The final check is for negative numbers. */
+ if (!isdigit(c) && c != '.' && c != '-') {
+ return c;
+ }
+ i = 0;
+ /* The second half of this if-statement accounts for negatives */
+ if (c == '-') {
+ if (!isdigit(buf[bufp]) && buf[bufp] != '.') {
+ return c;
+ } else {
+ s[i] = c;
+ c = buf[bufp];
+ }
+ } else {
+ s[i] = c;
+ }
+
+ if (isdigit(c)) {
+ while (isdigit(s[++i] = c = buf[bufp++]));
+ }
+ if (c == '.') {
+ while (isdigit(s[++i] = c = buf[bufp++]));
+ }
+ s[i] = '\0';
+ bufp--;
+ return NUMBER;
+}
+
+void stack_top(void) {
+ if (sp > 0) {
+ printf("Top of stack is %8g\n", val[sp - 1]);
+ }
+}
+
+double dupe_top(void) {
+ double temp = pop();
+ push(temp);
+ push(temp);
+}
+
+void swap_top_two(void) {
+ double tmp1, tmp2;
+ tmp1 = pop();
+ tmp2 = pop();
+ push(tmp1);
+ push(tmp2);
+}
+
+void clear_stack(void) {
+ sp = 0;
+}
+
+double fetch_var(char c) {
+ return vars[c - 'a'];
+}
+
+void store_var(char c, double f) {
+ vars[c - 'a'] = f;
+}
+
+void store_last(double f) {
+ vars[26] = f;
+}
+
+double fetch_last(void) {
+ return vars[26];
+}
+
+int mygetline(char s[], int lim) {
+ int c, i = 0;
+
+ while (--lim > 0 && (c = getchar()) != EOF && c != '\n') {
+ s[i++] = c;
+ }
+ if (c == '\n') {
+ s[i++] = c;
+ }
+ s[i] = '\0';
+ return i;
+}